Voluntary activation failure contributes more to plantar flexor weakness than antagonist coactivation and muscle atrophy in chronic stroke survivors.
نویسندگان
چکیده
The contributions of nervous system muscle activation and muscle atrophy to poststroke weakness have not been evaluated together in the same subject. Maximal voluntary contraction (MVC) torque, voluntary activation (twitch interpolation), and electromyographic (EMG) amplitude were determined bilaterally in the plantar flexors of seven chronic stroke survivors (40-63 yr, 24-51 mo poststroke). Volumes of the plantar flexor muscles were determined bilaterally with magnetic resonance imaging (MRI). The mean (±SD) contralesional (paretic) MVC torque was less than one-half of the ipsilesional leg: 56.7 ± 57.4 vs. 147 ± 35.7 Nm (P = 0.006). Contralesional voluntary activation was only 48 ± 36.9%, but was near complete in the ipsilesional leg, 97 ± 1.9% (P = 0.01). The contralesional MVC EMG amplitude (normalized to the maximum M-wave peak-to-peak amplitude) of the gastrocnemii and soleus were 36.0 ± 28.5 and 36.0 ± 31.0% of the ipsilesional leg. Tibialis anterior (TA) EMG coactivation was not different between the contralesional (23.2 ± 24.0% of TA MVC EMG) and ipsilesional side (12.3 ± 5.7%) (P = 0.24). However, TA EMG coactivation was excessive (71%) in one subject and accounted for ~8% of her weakness based on the estimated antagonist torque. Relative (%ipsilesional leg) plantar flexor and gastrocnemii volumes were 88 ± 6% (P = 0.004) and 76 ± 15% (P = 0.01), respectively. Interlimb volume differences of the soleus, deep plantar flexors, and peronei were not significant. Preferred walking speed (0.83 ± 0.33 m/s) was related to the contralesional MVC torque (r(2) = 0.57, P = 0.05, N = 7), but the two subjects with the greatest weakness walked faster than three others. Our findings suggest that plantar flexor weakness in mobile chronic stroke survivors reflects mostly voluntary activation failure, with smaller contributions from antagonist activity and atrophy.
منابع مشابه
Neural and muscular determinants of dorsiflexor weakness in chronic stroke survivors.
Few examined the contribution of neural and muscular deficits to weakness in the same stroke subject. We determined maximal voluntary contraction (MVC) and 50 Hz torques, activation (twitch interpolation), electromyographic (EMG) amplitude and antagonist coactivation, and muscle volume using magnetic resonance imaging (MRI) of the dorsiflexors bilaterally in 7 chronic stroke subjects (40-67 y)....
متن کاملFinger-thumb coupling contributes to exaggerated thumb flexion in stroke survivors.
The purpose of this study was to investigate altered finger-thumb coupling in individuals with chronic hemiparesis poststroke. First, an external device stretched finger flexor muscles by passively rotating the metacarpophalangeal (MCP) joints. Subjects then performed isometric finger or thumb force generation. Forces/torques and electromyographic signals were recorded for both the thumb and fi...
متن کاملFinger - thumb coupling contributes to exaggerated thumb 1 flexion in stroke survivors
38 Objective: The purpose of this study was to investigate altered finger-thumb coupling in 39 individuals with chronic hemiparesis post-stroke. 40 Methods: First, an external device stretched finger flexor muscles by passively rotating the 41 metacarpophalangeal (MCP) joints. Subjects then performed isometric finger or thumb force 42 generation. Forces/torques and electromyographic (EMG) signa...
متن کاملDifferences in Plantar Flexor Fascicle Length and Pennation Angle between Healthy and Poststroke Individuals and Implications for Poststroke Plantar Flexor Force Contributions
Poststroke plantar flexor muscle weakness has been attributed to muscle atrophy and impaired activation, which cannot collectively explain the limitations in force-generating capability of the entire muscle group. It is of interest whether changes in poststroke plantar flexor muscle fascicle length and pennation angle influence the individual force-generating capability and whether plantar flex...
متن کاملIn vivo physiological cross-sectional area and specific force are reduced in the gastrocnemius of elderly men.
Sarcopenia and muscle weakness are well-known consequences of aging. The aim of the present study was to ascertain whether a decrease in fascicle force (Ff) could be accounted for entirely by muscle atrophy. In vivo physiological cross-sectional area (PCSA) and specific force (Ff/PCSA) of the lateral head of the gastrocnemius (GL) muscle were assessed in a group of elderly men [EM, aged 73.8 yr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied physiology
دوره 109 5 شماره
صفحات -
تاریخ انتشار 2010